Question		ו	er	Mark	Guidance
1	(a)		$\begin{array}{l} (CH_{3}CO)_{2}O + CH_{3}CH(OH)CH_{3} \\ \rightarrow CH_{3}COOCH(CH_{3})_{2} + CH_{3}COOH \end{array}$ $\begin{array}{l} \textbf{1st mark} \\ \textbf{Correct structure of ester: } CH_{3}COOCH(CH_{3})_{2}\checkmark \end{array}$ $\begin{array}{l} \textbf{2nd mark} \\ \textbf{Equation contains correct formulae for } (CH_{3}CO)_{2}O, \\ CH_{3}CH(OH)CH_{3} \textbf{AND } CH_{3}COOH \checkmark \end{array}$	2	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous DO NOT ALLOW molecular formulae ALLOW (CH ₃) ₂ CHOOCCH ₃ OR (CH ₃) ₂ CHOCOCH ₃
	(b)	(i)	(relative) solubility ✓	1	IGNORE partition
		(ii)	The esters would have similar retention times AND similar structures/molecules OR same functional groups OR similar polarities OR similar solubilities ✓ Alcohol would have short retention time AND alkane would have long retention time ✓	2	IGNORE similar properties

Question	er	Mark	Guidance
(C)	Elemental analysis and molecular formula – 2 marks Use of percentages (to find EF) AND 144 \checkmark Molecular formula = C ₈ H ₁₆ O ₂ \checkmark	2 marks	ANNOTATIONS MUST BE USED Working $C: H: O = 66.63/12 : 11.18/1 : 22.19/16$ $5.5525 : 11.18 : 1.386875$ 4 : 8 : 1 Alternative method:
	ester structure – 4 marks $H_3C \longrightarrow CH_2 \longrightarrow CH_2 \longrightarrow CH_2 \longrightarrow CH_3$ $H_3C \longrightarrow CH_2 \longrightarrow CH_2 \longrightarrow CH_3$ $\downarrow \downarrow \downarrow \downarrow$	4 marks	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous NO ECF from earlier structures If not fully correct award following marks: If structure an ester of formula $C_8H_{16}O_2$ OR the organic structure contains $C(CH_3)_3 \checkmark$ If structure is an ester of formula $C_8H_{16}O_2$ AND ester contains $C(CH_3)_3 \checkmark \checkmark$ If structure is an ester of formula $C_8H_{16}O_2$ AND ester contains $O-CH_2C(CH_3)_3$ AND ester contains $CH_3CH_2COO \checkmark \checkmark \checkmark$ <i>i.e. If the ester link is reversed</i> O CH_3 CH_3 CH_3 CH_2 CH_2 CH_3 CH_3 IGNORE any name

Question	er	Mark	Guidance
	NMR analysis – 4 marks		 NOTE: Each peak can be identified from: its δ value: ± 0.2 ppm a range, eg 'the peak between 2 and 3' its relative peak area (CARE two peaks have an area of 2) its splitting (CARE: two peaks are singlets) labelling on the spectrum
	Triplet (at δ 1.3) shows an adjacent CH ₂ OR triplet (at δ 1.3) shows (C with) 2 adjacent Hs/protons \checkmark (because of splitting: so triplet)		QWC: triplet must be spelled correctly ALLOW neighbouring Hs for adjacent to Hs
	Peak at (δ) 2.2 shows H adjacent to C=O AND adjacent to (C with) no hydrogens \checkmark (because of no splitting: so singlet)		For peak at (δ) 2.2 ALLOW singlet at (δ) 2.2 ALLOW singlet labelled 2
	Peak at (δ) 4.2 shows H–C–O AND adjacent CH ₃ OR 3 adjacent Hs/protons \checkmark (because of splitting: so quartet)		For peak at (δ) 4.2 ALLOW quartet (labelled 2)
	Peak at (δ) 0.9 show 3 x CH ₃ \checkmark (because of singlet and area 9)	4 marks	Check back for any responses added to spectra ADD ^ MARK TO THE SPECTRUM PAGE TO SHOW THAT IT HAS BEEN LOOKED AT
	Total for 4(c)	10	
	Total	15	

(Question		Answer	Mark	Guidance	
2	(a)		propane-1,2,3-triol ✓	1	 ALLOW absence of 'e' after 'propan' ALLOW 1,2,3-propanetriol ALLOW absence of hyphens 1, 2 and 3 must be clearly separated: ALLOW full stops: 1.2.3 OR spaces: 1 2 3 DO NOT ALLOW 123 	
2	(b)	(i)	methanol OR ethanol AND		BOTH points required for the mark ALLOW correct structural OR displayed OR skeletal formula DO NOT ALLOW molecular formulae	
			renewable ✓	1	ALLOW easy/cheap to manufacture/produce as alternative for renewable/from plants/from fermentation/burns more easily/efficiently	
	(b)	(ii)	equilibrium shifts to right ✓	1	ALLOW equilibrium shifts in forward direction ALLOW more products form ALLOW greater yield OR fully reacts OR goes to completion DO NOT ALLOW improves atom economy	

Question		ion	Answer	Mark	Guidance
2	(c)		$\begin{array}{l} CH_3CH_2COOH + CH_3CH_2OH \rightarrow CH_3CH_2COOCH_2CH_3 + \\ H_2O \checkmark \end{array}$		ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous DO NOT ALLOW molecular formulae
			$(CH_{3}CH_{2}CO)_{2}O + CH_{3}CH_{2}OH \rightarrow CH_{3}CH_{2}COOCH_{2}CH_{3} + CH_{3}CH_{2}COOCH_{2}CH_{3} + CH_{3}CH_{2}COOH$	2	ALLOW further esterification, <i>ie</i> $(CH_3CH_2CO)_2O + 2CH_3CH_2OH$ $\rightarrow 2CH_3CH_2COOCH_2CH_3 + H_2O$ ALLOW linear formula for anhydride, ie
					$CH_3CH_2COOCOCH_2CH_3$ If incorrect carboxylic acid/anhydride/alcohol is used, ALLOW ECF for second equation

Question		ion	Answer	Mark	Guidance		
2	(d)		Α	В	С		Mark A, B and C
			HO-CH ₂ -CH ₂ -COOH	$H_2C \xrightarrow{O}_{H_2C} O$	О Ш О-СН ₂ -СН ₂ -СН ₂ -С		 independently ie A can be any of the alternatives in the 1st column B can be any of the alternatives in the 2nd column
			OR	OR	OR		• C can be any of the
			СН ₃ НО—СН—СН ₂ -СООН	H ₂ CC	СН ₃ О О—СН—СН ₂ —С	ALLOW corred OR displayed formula	ALLOW correct structural OR displayed OR skeletal formula
			OR	OR	OR		ALLOW combination of
			С ₂ Н ₅ НО—СН—СООН	C2H5 CH-C	С ₂ H ₅ О О—СН—С		unambiguous DO NOT ALLOW molecular formulae
			OR	OR	OR		
			СН ₃ НО—СН ₂ —СН—СООН	H ₃ C CH-C H ₂ C-O	СН ₃ О ОСН ₂ СНС		ALLOW correct names for A, B and C For B accept diester For C,
			OR	OR	OR		IGNORE 'n' OR brackets
			СН ₃ НО—С—СООН СН ₃	H_3C H_3C C C C C C C	CH ₃ O CH ₃ C CH ₃		(even if wrong); ALLOW solid side bonds Minimum is one correct repeat unit. Polymer must be open at both ends
					Total	8	

Question		Answer		Guidance
3 (a)		observation: silver OR Ag \checkmark type of reaction: oxidation \checkmark organic product: H ₃ C CH ₃ OH CH ₃ \checkmark	3	ALLOW black OR grey ALLOW redox ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous DO NOT ALLOW molecular formulae ALLOW carboxylate, -COO ⁻
3 (b)		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	ALLOW mechanism showing curly arrows from lone pair on H ⁻ and O ⁻ of intermediate Dipole not required on H–O–H DO NOT ALLOW incorrect dipole on H–O–H ALLOW 1 mark for correct intermediate with '–' charge on O AND curly arrow from O ⁻ to H ⁺ IGNORE missing OH ⁻
		1 mark for correct organic product ✓		DO NOT ALLOW incorrect second product

Question		ion	er	Mark	Guidance
3	(c)		<i>reagent</i> : Br₂ ✓		DO NOT ALLOW ECF from incorrect reagent, eg 2,4-DNP
3	(c)		reagent: $Br_2 \checkmark$ observation: decolourised OR orange to colourless \checkmark organic product: \checkmark $H_3C \qquad CH_3 \qquad H \qquad H \qquad H \qquad H_3C \qquad CH_3 \qquad H \qquad $	3	DO NOT ALLOW ECF from incorrect reagent, eg 2,4-DNP DO NOT ALLOW goes clear ALLOW red/orange/yellow/brown in any combination ALLOW organic product from reaction of one of the double bonds only, ie $H_{3}C \xrightarrow{CH_{3}}H$ $H_{3}C \xrightarrow{CH_{3}}H$ $H_{3}C \xrightarrow{CH_{3}}H$ R $H_{3}C \xrightarrow{CH_{3}}H$ R R R R R R R R
					DO NOT ALLOW molecular formulae
					ALTERNATIVE reagents
					For 1st mark, ALLOW H_2 OR Cl_2 OR l_2 OR HCl OR HBr OR Hl OR H_2O
					For 2nd mark, there must be a statement of no change OR no observation or similar that implies there is no visible change EXCEPT for I_2 which has an observation of 'decolourised' OR brown to colourless
					For 3rd mark, correct organic product must be shown that could be from reaction of both or one of the double bonds.
			Total	10	

Q	Question		Expected Answers	Marks	Additional Guidance
4	(a)	(i)	<u>silver</u> mirror ✓	1	ALLOW Ag(s) OR Ag mirror OR precipitate OR ppt OR solid ALLOW brown OR black OR grey
		(ii)	HOCH₂COOH ✓	1	ALLOW CH ₂ OHCOOH OR CH ₂ OHCO ₂ H OR HOCH ₂ CO ₂ H OR displayed OR skeletal formula OR HOCH ₂ COO ⁻ DO NOT ALLOW C ₂ H ₄ O OR 2-hydroxyethanoic acid
	(b)		$\begin{array}{rrr} HOCH_2CHO+3[O] \to HOOCCOOH &+ &H_2O \\ \text{reagents} &\checkmark & \text{both products} &\checkmark \end{array}$	2	ALLOW displayed/skeletal formula/COOHCOOH $\checkmark \checkmark$ if molecular formula used C ₂ H ₄ O ₂ + 3[O] \rightarrow C ₂ H ₂ O ₄ + H ₂ O max = 1 \checkmark
					Any correctly balanced equation for partial oxidation can score 1 mark \checkmark HOCH ₂ CHO + [O] \rightarrow HOCH ₂ COOH OR HOCH ₂ CHO + 2[O] \rightarrow OHCCOOH + H ₂ O OR HOCH ₂ CHO + [O] \rightarrow OHCCHO + H ₂ O OR HOCH ₂ CHO + 2[O] \rightarrow HOOCCHO + H ₂ O
	(c)	(i)	HOCH₂CH₂OH ✓	1	ALLOW HO(CH ₂) ₂ OH OR (CH ₂ OH) ₂ OR skeletal formula OR displayed formula DO NOT ALLOW molecular formula (C ₂ H ₆ O ₂)
		(ii)	curly arrow from H ⁻ to $C^{\delta_{+}} \checkmark$ dipoles <u>and</u> curly arrow from C=O bond to O \checkmark intermediate \checkmark curly arrow from intermediate to H ^{δ_{+}} in H ₂ O/H ⁺ and if H ₂ O is used it must show the curly arrow from the O–H bond to the O \checkmark <i>lone pairs are not essential</i>	4	 ALLOW curly arrow to C even if dipole missing or incorrect ALLOW maximum of 3 marks if incorrect starting material is used See page 36 for detailed mechanisms – <i>Alternative 3</i> scores all 4 marks even though the intermediate is not shown

PhysicsAndMathsTutor.com

C	Question		Expected Answers	Marks	Additional Guidance
5	(a)		HO	1	ALLOW HO HO HO HO HO Or HO Or HO Or HO Or HO Or HO Or HO Or OOH
	(b)	(i)	equation $(CH_3CO)_2O + H_2N \longrightarrow OH$ reactants \checkmark $H_3C \longrightarrow OH + CH_3COOH$ H products \checkmark	2	ALLOW $(CH_3CO)_2O + H_2NC_6H_4OH \rightarrow CH_3CONHC_6H_4OH + CH_3COOH$ ALLOW $H \rightarrow OH$ H OH H OH

	(ii)	$C_{10}H_{11}NO_{3} \text{ is } 0$ $H_{3}C - C - O$	1	ALLOW amide shown as either CH ₃ CONH– OR H ₃ CCONH– OR CH ₃ COHN– OR H ₃ CCOHN– ALLOW ester shown as either –OCOCH ₃ OR –OOCCH ₃
	(iii)	to ensure t at there are no (harmful) side effects ✓	1	ALLOW impurities reduce effectiveness (of drug) OR might be toxic OR avoids litigation OR harmful OR hazardous ALLOW to ensure that the drug/active component is safe IGNORE dangerous OR nasty OR can kill OR increased dosage
(c)		(aspirin contains) ester AND carboxylic acid ✓ (paracetamol contains) amide AND phenol ✓	2	IGNORE arene or benzene or aromatic or phenyl or methyl but any other group loses the mark ALLOW carboxyl group DO NOT ALLOW acid IGNORE arene or benzene or aromatic or phenyl or methyl but any other group loses the mark ALLOW peptide ALLOW hydroxy(I) DO NOT ALLOW hydroxide or alcohol DO NOT ALLOW amine
(d)	(i		3	ALLOW hydrolysis by $H^+(aq)$ or H^+ or $HCI(aq)$ or HCI or $H_2SO_4(aq)$

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com

Qı	iestio	on Expected Answers	Marks	Additional Guidance
6	(a)	infrared – 1 mark only shows (very broad) peak between 2500–3300 (cm ⁻¹) (due to O–H bond) ✓	3	ALLOW (very broad) peak around 3000 (cm ⁻¹) OR any stated value between 2500 and 3300 (cm ⁻¹) for O–H DO NOT ALLOW peak in range 3200–3550 (cm ⁻¹) IGNORE any reference to C=O or C–O as both are also present in an ester OR to fingerprint region
		¹³ C NMR – 2 marks (CH ₃) ₂ CHCH ₂ COOH has 4 peaks (due to 4 different C environments) \checkmark (CH ₃) ₃ CCOOH has 3 peaks (due to 3 different C environments) \checkmark		ALLOW ' ¹³ C NMR detects the number of/different C environments' for $1 \checkmark$, suitable example for the 2nd mark
	(b)	splitting pattern explains any two in terms of ' n + 1 rule' for two marks $\checkmark \checkmark$ Explains any one peak for 1 mark \checkmark	6	1 mark for correct ester if two splitting patterns are correctly analysed ignore the third
		• singlet therefore adjacent C (if any) has no Hs		ALLOW singlet because next or bonded to an O
		 multiplet OR split into 7 therefore adjacent Cs have lots of/6 Hs 		ALLOW multiplet/heptet because next to 2 CH ₃ s
		• <i>doublet</i> therefore adjacent C is bonded to 1H		ALLOW doublet because next to a CH
		must spell one of multiplet / heptet, singlet, doublet correctly max = 2 marks		
		chemical shifts		ALLOW tolerance on δ values; 3.6–3.8, 2.6–2.8 and 1.1–1.3

Total	9	
compound identified as $(CH_3)_2CHCOOCH_3 \checkmark 2$ marks compound identified as $CH_3COOCH(CH_3)_2 \checkmark 1$ mark		
 one mark if any one absorption is identified correctly ✓ peak ~3.7 (ppm) – bonded to an O peak ~2.7 (ppm) – indicates it is next to a C=O peak ~1.2 (ppm) – bonded to other Cs OR part of a chain max = 2 marks 		ALLOW any two gets 2 marks, any one scores 1 mark HC—O HC—C R—CH 3.7 (ppm) 2.7 (ppm) 1.2 (ppm) ALLOW peaks labelled on the spectrum ALLOW singlet must be bonded to O, multiplet to C=O and doublet to CH or R for both chemical shift marks if two chemical shifts are correctly identified IGNORE the third
two marks if any two absorptions are identified correctly $\checkmark \checkmark$		(ppm)